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Abstract Temperate grasslands play globally an important role, for example, for biodiversity conservation,
livestock forage production, and carbon storage. The latter two are primarily controlled by biomass
production, which is assumed to decrease with lower amounts and higher variability of precipitation, while
increasing air temperature might either foster or suppress biomass production. Additionally, a higher
atmospheric CO2 concentration ([CO2]) is supposed to increase biomass productivity either by directly
stimulating photosynthesis or indirectly by inducing water savings (CO2 fertilization effect). Consequently,
future biomass productivity is controlled by the partially contrasting effects of changing climatic conditions
and [CO2], which to date are only marginally understood. This results in high uncertainties of future
biomass production and carbon storage estimates. Consequently, this study aims at statistically estimating
mid-21st century grassland aboveground biomass (AGB) based on 18 years of data (1998–2015) from a free air
carbon enrichment experiment. We found that lower precipitation totals and a higher precipitation variability
reduced AGB. Under drier conditions accompanied by increasing air temperature, AGB further decreased. Here
AGB under elevated [CO2] was partly even lower compared to AGB under ambient [CO2], probably because
elevated [CO2] reduced evaporative cooling of plants, increasing heat stress. This indicates a higher susceptibility
of AGB to increased air temperature under future atmospheric [CO2]. Since climate models
for Central Europe project increasing air temperature and decreasing total summer precipitation associated with
an increasing variability, our results suggest that grassland summer AGB will be reduced in the
future, contradicting the widely expected positive yield anomalies from increasing [CO2].

1. Introduction

On a global scale, approximately 26% of the terrestrial areas (Foley et al., 2011) and 70% of farmland
(Soussana & Lüscher, 2007) are covered by grasslands. In Europe, permanent meadows and pastures (mainly
composed of C3 species) cover approximately 38% of the agricultural area (Food and Agriculture
Organization of the United Nations Statistics Division, 2015). The enormous extent highlights the importance
of grasslands for biodiversity conservation and forage supply for wildlife and livestock. Additionally, grass-
lands play an important role within the global carbon cycle through carbon assimilation, today harboring
approximately 20% of the world’s carbon pool (Schlesinger & Andrews, 2000; White et al., 2000) and poten-
tially maintaining its CO2 sink function under future climate conditions (Schimel et al., 2015), depending upon
future biomass productivity (Parton et al., 2012).

Biomass productivity, in respect to climate variables, is claimed to be mainly controlled by air temperature
and precipitation inputs (Andresen et al., 2016; Luo, 2007; Mowll et al., 2015; Nippert et al., 2006; Parton
et al., 2012; Weltzin et al., 2003). However, the effect of air temperature on biomass productivity is still under
debate. With increasing air temperature, a shift towards an optimum growth temperature (Luo, 2007; Myneni
et al., 1997), lengthening of the growing season through earlier spring emergence and later autumn senes-
cence (Hufkens et al., 2016; Luo, 2007), and increased nutrient availability due to higher microbial activity
(Luo, 2007; Rustad et al., 2001) may foster aboveground biomass (AGB) production. In contrast, if atmospheric
water availability remains constant, rising air temperature increases evaporation, decreases soil moisture
availability (Niu et al., 2008), and increases midday heat stress (De Boeck et al., 2008), altogether hampering
AGB productivity. The current view on the expected influences of changes in precipitation on grassland AGB
is more uniform. Since the productivity of most temperate grasslands is positively influenced by rainfall,
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increases in total summer precipitation will concomitantly increase grassland productivity (Nippert et al.,
2006; Weltzin et al., 2003; Yang et al., 2008). However, changes in precipitation variability alter grassland pro-
ductivity independent of the total precipitation (Fay et al., 2003, 2011; Gherardi & Sala, 2015; Knapp et al.,
2008; Nippert et al., 2006). Especially during the summer, decreased AGB with increasing precipitation varia-
bility has been related to a critical dry-down of soil moisture (Nippert et al., 2006). This effect of precipitation
variability on productivity is particularly evident for grasslands that feature relatively shallow roots feeding
the plant water demand from the upper layers of soil (Gherardi & Sala, 2015; Knapp et al., 2008).

Despite climate-induced changes in AGB productivity, it is widely accepted that increasing [CO2] will enhance
future biomass productivity through reduced CO2 limitation of (C3) plants, which is usually referred to as the
CO2 fertilization effect (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Lloyd & Farquhar, 2008; Soussana
& Lüscher, 2007). As a consequence of reduced CO2 limitation, water-use efficiency of plants increases
because stomata need less be opened to obtain CO2 (Kellner et al., 2017). Thus, it is expected that the CO2

fertilization effect is particularly strong under drier conditions (Morgan et al., 2004; Soussana & Lüscher,
2007; Volk et al., 2000). Likewise, a strong CO2 fertilization effect is anticipated under warm conditions, when
the ratio of photosynthesis to photorespiration is decreased, since photosynthesis is promoted by elevated
[CO2] (Long, 1991; Luo, 2007; Morison & Lawlor, 1999). However, field studies have shown that the CO2 ferti-
lization effect is reduced under more extreme conditions (e.g., drier and/or hotter; Hovenden et al., 2014;
Obermeier et al., 2017; Reich et al., 2014). In agreement with those findings, recent studies suggest that plants
benefit from increasing CO2 only if carbon demand is high, the latter depending on processes of tissue
formation and cell growth (Fatichi et al., 2014; Körner, 2015).

As a result, changing climate and increasing atmospheric [CO2] interact and may have contrasting effects on
biomass productivity in the future, which is currently poorly understood and is mainly studied by numerical
models (e.g., Chang et al., 2017; Gu et al., 2013; Hufkens et al., 2016; Huntzinger et al., 2017; Rounsevell et al.,
2005). To overcome model uncertainties, a field data-driven assessment of the future AGB productivity is
urgently needed, for example, to estimate future vulnerability of livestock forage, biodiversity conservation,
and carbon storage. Large-scale and long-term experiments under natural conditions provide the best pos-
sibility to test AGB response to the multitude of interactions under climate change (De Boeck et al., 2008; Zhu
et al., 2016). Therefore, free air carbon enrichment (FACE) experiments represent a state-of-the-art technique.
Here we use one of the longest continuously operating FACE experiments on grasslands to estimate, for the
first time, future biomass production, combining field measurements, simulated future climate regimes, and
a variable atmospheric [CO2]. To construct future climate regimes, we modified the ranges and relations of
the climate variables during the experimental period, to coincide with the general findings of IPCC
projections. By comparing the AGB under the different climate regimes, we quantified changes of biomass
production in the mid of the 21st century in relation to current yields. To achieve this, we (1) generated
potential future climatic regimes, by slightly altering the ranges and relations of climate variables selected
during an exhaustive AGB model selection approach, and (2) estimated the AGB productivity under ambient
and elevated [CO2] within the potential future climate regimes. Significant changes among climatic regimes
and [CO2] were evaluated to quantify the relative changes and the uncertainties of future biomass
production in C3 grasslands of Central Europe.

2. Materials and Methods
2.1. Study Site

The large-scale FACE field experiment near Giessen, Germany (GiFACE; 50°320N and 8°410E; 172 m a.s.l) has
been running since 1998. The main purpose of the GiFACE experiment is to study the effects of higher
[CO2] on a temperate, nongrazed and extensively managed, species-rich grassland ecosystem. Six FACE rings
of 8-m diameter were established (for a detailed description of the study site see Andresen et al., 2017, and
Jäger et al., 2003). In three of the rings (control rings) plants grew under ambient CO2 conditions. In the other
three rings, the vegetation has been exposed to elevated CO2 conditions (~20% above ambient [CO2] during
daylight hours), roughly simulating the CO2 conditions expected for the period from 2021 to 2050. Compared
to other FACE studies, such a low CO2 enrichment was chosen to prevent artifacts that may arise from a sud-
den stepwise increase in [CO2] (Luo, 2001; Newton et al., 2001). The soil is a Fluvic Gleysol (Food and
Agriculture Organization of the United Nations, 1994) with a sandy clay loam layer above a clay layer of
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variable depth (Kammann et al., 2005). The grassland composition is comparable within all rings and is domi-
nated by the C3 grasses Arrhenaterum elatium, Galium mollugo, Holcus lanatus, and Poa pratensis, accompa-
nied by a forb fraction and legumes, the latter at low abundance (Kammann et al., 2005). Throughout the
experimental period, the vegetation has been steadily fertilized with 40-kg nitrogen·ha�1·year�1 and
600 kg·ha�1·year�1 of 10% phosphorus pentoxide +15% potassium oxide +3% magnesium oxide and 33%
calcium oxide + magnesium oxide in spring (Kammann et al., 2005).

2.2. Meteorological Data, Vegetation, and CO2 Data

The meteorological data were measured at the field site from climate stations run by the Hessian Agency of
Nature Conservation, Environment and Geology (HLNUG) and the Environmental Monitoring and Climate
Impact Research Station Linden (UKL). For air temperature, a Pt-100 resistance thermometer at 2-m height
was used. Precipitation was measured using three Hellmann samplers, randomly distributed over the
experimental area.

The AGB (dry matter) was derived at the time of peak biomass accumulation (beginning of September) by
cutting the vegetation approximately 5 cm above ground and subsequently oven drying at 105 °C. To enable
a comparison of climate-induced changes on AGB productivity, we investigated the AGB in the control rings
under ambient [CO2] (aAGB) and in the rings exposed to elevated CO2 (eAGB). Mean values of AGB were cal-
culated for both treatments and each year.

To model AGB productivity depending on environmental conditions, we generated various climate predic-
tors (refer to section 2.3). Therefore, we used the meteorological data sets (hourly and half-hourly measure-
ments) and included the 90 days prior to each September harvest in the analysis, roughly corresponding to
the summer months of June, July, and August. Within these 90-day periods, predictors for AGB estimation
were calculated. Hourly precipitation was aggregated to daily precipitation total. Daily mean, minimum,
and maximum values of air temperature were extracted from half-hourly measurements. All data sets used
for current biomass modeling covered the time period from 1998 to 2015. Technical problems caused a very
low CO2 enrichment in 2012 and a very high CO2 enrichment in 2013 (Obermeier et al., 2017). Thus, both
years were excluded from further analysis. Data analysis was conducted using the CRAN R version 3.3.3
(R Core Team, 2017). An overview of the processing steps is given in the supporting information Figure S1.

2.3. Predictors for AGB

The estimation of future grassland AGB requires a wide set of variables to account for both changes in
absolute air temperature and precipitation values and shifts in their variability. While simple statistical
models depend on basic climate variables, such as the mean annual temperature and total annual preci-
pitation (e.g., Lee et al., 2011), other studies suggest that additional attributes such as the timing and
frequency of precipitation events influence ecosystem productivity and thus should be included in the
analysis (Craine et al., 2012; Heisler-White et al., 2008; Knapp et al., 2015; La Pierre et al., 2011; Nippert
et al., 2006; Parton et al., 2012; Swemmer et al., 2007; Yang et al., 2008). To depict a realistic image of
the most important ecophysiological conditions, we created various predictors based on air temperature
(Table 1) and precipitation (Table 2) data. Further details on the predictor variables used in this study
can be found in Text S1.

2.4. Creation of Predictor Subsets

To ensure that, regardless of the result of the variable selection (refer to section 2.5), biomass alterations can
be attributed to either changes in air temperature or the variability of precipitation inputs, two separate pre-
dictor subsets were created: The first subset consisted of temperature-related variables, and the second one
was based on precipitation-related variables. However, since the total summer precipitation is expected to
dominate the influence on the AGB production, it is included as predictor in both subsets. Consequently,
the precipitation amount and air temperature subset includes the mean air temperature, mean daily maxi-
mum air temperature, growing degree-days, killing degree-days, and the transformed mean air temperature,
along with the total summer precipitation. The precipitation amount and variability subset contains the
variables of total summer precipitation, maximum daily precipitation, number of dry days, number of rain
events, mean event size, maximum dry-interval length, and the mean dry-interval length.
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2.5. Selection of Final Predictors and Final Model Creation

Two separate partial least squares regression (PLSR) models were fitted to estimate aAGB and eAGB in rela-
tion to the predictors included in the precipitation amount and air temperature and the precipitation amount
and variability subsets. The final set of predictor variables within each subset was selected applying an
exhaustive information-theoretic model-selection approach based on the Akaike information criterion

Table 1
Overview of the predictors derived from air temperature (2 m) measurements

Abbreviation Long form Unit Formula

AT_Mean Mean air temperature °C Ph
i¼h�90

Tmeani
90

AT_MeanTrans Transformed mean air temperature °C

Tmeanall ¼
P

ATMean
18

Tmeanall �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

i¼h�90
Tmeani

90
� Tmeanall

� �2
s

AT_MaxMean Mean of the daily maximum air temperature °C Ph
i¼h�90

Tmaxi
90

GDD Growing degree-days °C Xh

i¼h�90

Tmini þ Tmaxi
2

� 5;

Tmini ¼
5°C if Tmini < 5°C

Tmini otherwise

(

Tmaxi ¼
30°C if Tmaxi > 30°C

Tmaxi otherwise

(

KDD Killing degree-days °C Xh

i¼h�90
Tmaxi ;

Tmaxi ¼
0°C if Tmaxi < 30°C

Tmaxi otherwise

(

Note. h denotes the day of year of harvest. Tmeani, Tmaxi, and Tmini refer to the aggregated average, maximum, and minimum air temperature of day i, respec-
tively; Tmeanall is the long-term average air temperature within the investigated 90-day periods.

Table 2
Overview of the predictors derived from precipitation measurements

Abbreviation Long form Unit Formula or description

PPT_Sum Total summer precipitation mm Ph
i¼h�90 PPTi

N° dry days Number of days with less than 1
mm of precipitation

days Xh

i¼h�90
DD;

DD ¼
0 ifPPTi≥1mm

1 ifPPTi < 1mm

(

Mean dry-interval length Mean dry-interval length days A dry-interval is defined by at least six consecutive days with
less than 1 mm of precipitation. The average length of the
dry-intervals is calculated.

Max dry-interval length Maximum dry-interval length days Number of days in the longest period of consecutive dry
days with less than 1 mm precipitation.

N° rain events Number of rain events events Number of rain events, where consecutive days with
precipitation >1 mm are counted as one event

Mean event size Mean precipitation total for one rain event mm Ph

i¼h�90
PPTi

N° rain events

PPT_Max Maximum of the daily precipitation totals mm max(PPTi)

Note. h denotes the Day of Year of harvest. PPTi is the sum of the daily precipitation in day i.
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(Akaike, 1973), supported by PLSR regression outputs. The selection of the
optimal set of predictor variables was performed using the averaged AGB
of all rings, resulting in an identical predictor space for eAGB and aAGB. For
further information on predictor selection, model tuning and validation of
the biomass estimation, see Text S2.

2.6. Future Climate Regime Creation and Regime-Based
AGB Estimations

For each subset, we created the most plausible future climate regimes by
altering the selected predictor variables. Since neither air temperature nor
precipitation regimes have experimentally been altered, we extracted
potential future regimes (e.g., low precipitation input with high air tem-
perature) within the ranges and inherent relations of the climatic variables
measured during the experimental period. The methodology is described
briefly in the following; for a detailed description with the example of the
dry regime in the precipitation amount and air temperature subset refer to
Figure S1 and Text S3.

Since total summer precipitation is the most important predictor for
summer AGB, all climatic regimes were primarily defined by means of the total summer precipitation (preci-
pitation amount regime; compare Figure 1). Dry regimes are located within the lower quartile and medium
precipitation regimes within the interquartile range of the observed 90-day precipitation amount measured
during the 18 years of the experiment. To account for other variables that influence the biomass productivity,
we defined three subregimes for each main precipitation amount regime by altering the remaining predic-
tors. This resulted in two main regimes and six subregimes for each of the two subsets (precipitation amount
and air temperature, and precipitation amount and variability subset; Figures 1, 3, and 4).

For the creation of subregimes we used the empirical relationship between the climatic drivers during the
experimental period assuming that the qualitative relationships between the climate variables will persist
despite of climate change. Therefore, linear regression models between the total summer precipitation
and each predictor variable were calculated. To account for possible stronger variations of the climatic con-
ditions in the future, 1,000 precipitation sample values were uniformly drawn within the respective precipita-
tion amount regime boundaries (e.g., a total summer precipitation between 105 and 155 mm for the dry
regime). For each precipitation value, the regression estimates were used to interpolate the corresponding
predictor values. Since lower correlations between climatic variables enlarge the uncertainty of the regres-
sion results, the estimates were not directly used. Instead, 1,000 normal distributions were fitted to the
sampled precipitation values, with the corresponding predictor estimate as mean value, and a standard
deviation calculated according to the 0.05 and 0.95 confidence interval of the linear regression model.
From each of the 1,000 distributions, one single value was randomly sampled and used as the predictor value
corresponding to the respective precipitation sample value. For the hot (hot in Figure 1) and variable preci-
pitation (varP in Figure 1) subregimes, the mean values of the normal distributions were shifted by plus one
standard deviation. For the cold (cld in Figure 1) and constant precipitation variability (conP in Figure 1) sub-
regimes, the mean values of the normal distributions were reduced by one standard deviation accordingly.
The resulting boundaries of the subregimes are depicted in Figures 3 and 4, respectively (thresholds of the
climate variables within the subregimes can be found in Tables S6 and S7, respectively). Within each of these
subregimes, eAGB and aAGB were estimated by means of the 1,000 samples for each predictor and the final
PLSR models. To compare the biomass estimations, we also calculated the relative AGB change in the
elevated compared to the ambient rings for each subregime (100*(eAGB-aAGB)/aAGB).

2.7. Assessment of Future Climate Conditions

To assess the climate regimes that are most likely to depict frequent future conditions, we compared the
projected predictor alterations to various climate model results. Due to the well-known, nonlinear relation-
ship between [CO2] and photosynthesis (Farquhar et al., 1980), we constrained our analysis to the years
2021 to 2050 with a predicted atmospheric [CO2] in the range of the experimentally enriched [CO2] in the
elevated rings. One hundred twenty-three numerical regional climate models based on different global

Figure 1. Schematic overview of the regimes and subregimes for the
precipitation amount and air temperature subset and the precipitation
amount and variability subset. Main regimes were primarily defined by the
precipitation amounts. For each main regime and subset, three subregimes
were defined by modifying the related predictor variables. The predictor
ranges for the different subregimes can be found in Tables S6 and S7. Med
stands for medium precipitation amount, medT stands for medium air
temperature, medP stands for medium precipitation variability, cld stands for
cold, varP stands for a high precipitation variability, and conP stands for a low
variability in the precipitation inputs.
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models and emission scenarios publicly available in the Regionaler Klimaatlas Deutschland (Regionale
Klimabüros in der Helmholtz-Gemeinschaft, 2017) were used. Here various climate calculations based on
the Special Report on Emissions Scenarios A1B (total number = 24; Hollweg et al., 2008; Jacob et al., 2008;
van der Linden & Mitchell, 2009), A2 (20; Christensen, 2005; Jacob et al., 2008), B1 (3; Hollweg et al., 2008;
Jacob et al., 2008), and B2 (4; Christensen, 2005), as well as based on representative concentration
pathways (RCP) 2.6 (10; Jacob et al., 2014, RCP), 4.5 (30; Jacob et al., 2014), and RCP8.5 (32, Jacob et al.,
2014) were included. To assess the most probable predictor alterations for the years 2021 to 2050, we
considered model runs that depict the minimum, mean, and maximum changes of the respective variable
in the ensemble in Germany. Moreover, we depicted the mean change of the respective variable in the
ensemble and selected future time period for the experimental area in Linden. For ease of assignment, we
refer to the climate calculations always in the form of “emission scenario/global model/regional model”.

3. Results

To unravel the relations between predictor variables and biomass productivity, Pearson’s correlation coeffi-
cients were calculated (Table S1). For total summer precipitation, Pearson’s correlation coefficient was greater
than 0.8 for the mean size of rain events, which we therefore excluded from further analysis to enable a
proper predictor selection. Very high correlations were found between mean air temperature, growing
degree-days, killing degree-days, and mean of daily maximum air temperature. The strongest correlation
with AGB was observed for total summer precipitation. Significant correlations with summer AGB were found
for all predictors except growing degree-days, number of dry days, maximum dry-interval length, and trans-
formed mean air temperature.

The combined approach using information theory and PLSR technique revealed predictors for the finals mod-
els for AGB estimation within the two subsets (Tables S2 and S3, and Text S4). For the precipitation amount
and air temperature subset, final predictors were total summer precipitation and transformed mean air tem-
perature. For the precipitation amount and variability subset, total summer precipitation, number of rain
events, number of dry days, and mean dry-interval length were chosen as final predictors.

The predictive performance of the final PLSR model for the precipitation amount and air temperature subset
was generally high, except for 2 years (2008 and 2015, Figures 2a and 2b). The best performances were

Figure 2. Leave-one-out cross-validation of summer aboveground biomass (AGB) estimation in the ambient (a and c) and the elevated rings (b and d) for the
precipitation amount and air temperature subset (a and b), and the precipitation amount and variability subset (c and d). Each point represents the treatment-wise
AGB per square meter and harvest date. The solid and dashed lines depict the linear regression line and the 1:1 line, respectively.
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yielded for aAGB if one latent vector was used and for eAGB if two
latent vectors were used (Table S4). Within the precipitation amount
and variability subset three latent vectors were used for the estima-
tion of aAGB as well as for eAGB (Table S5). Here differences between
estimated and measured AGB values were very small (Figures 2c and
2d). The model residuals did not tend to change towards the more
extreme AGB yields (e.g., very high yields in 2000, 2007, and 2014;
and very low yields in 2003 and 2015).

The ranges of the predictor values within the future subregimes of the
precipitation amount and air temperature subset, as well as the preci-
pitation amount and variability subset, can be found in Tables S6 and
S7, respectively. Within the precipitation amount and air temperature
subset, lower precipitation totals coincided with higher air tempera-
ture (Figure 3). Air temperature changes were higher within the dry
subregimes (dry) than in the medium precipitation subregimes
(medP). Within the precipitation amount and variability subset, a
higher variability in rainfall (varP) coincided with a higher number of
dry days, a longer mean dry-interval length, and a lower number of
rain events (Figure 4). The regimes with comparable constant precipi-
tation inputs (conP) were characterized by a lower number of dry
days, a shorter mean dry-interval length, and a higher number of
rain events.

The results of the estimation of biomass under future conditions will be outlined first for the air temperature-
related subset, followed by the precipitation variability-related subset. AGB productivity was lowest in the dry

main regime with a biomass yield lower than the average during the
experimental period, for both rings with elevated [CO2] and rings
under ambient atmospheric [CO2] (Figure 5a). With an increase in air
temperature, eAGB was significantly further decreased within the
dry regime, and the dry and hot subregime (dry/hot) showed the
overall lowest summer AGB. Accordingly, the highest AGB within
the dry regime was estimated in the dry and cold subregime (dry/cld).
The medium precipitation regime revealed an eAGB in the range of
the elevated [CO2] rings during the experimental period, while changes
in the air temperature caused slightly significant changes only between
the hot (med/hot) and medium temperature (med/medT) subregimes.
Significantly higher eAGB compared to aAGB was found for all
subregimes (<0.001; Figure 5b). This relative AGB change was highest
for the medium precipitation and medium air temperature subregime
(med/medT) and hardly altered by air temperature in the medium
precipitation regime. In the dry regime, increasing air temperature
reduced the relative AGB change. Here even negative values were
observed, representing lower AGB values under elevated compared to
ambient conditions.

Within the precipitation amount and variability subset, the estimated
AGBwas lowest in the dry regime (Figure 6a), with AGB lower than the
mean AGB of the experimental period. For the medium precipitation
regime, AGB was in the range of the average AGB during the experi-
mental period. Over the full range of the predictors appearances,
summer AGB increased with total summer precipitation and number
of rain events, while an increase in the number of dry days and mean
dry-interval length significantly reduced summer eAGB. With a more
even distribution of rainfall events, eAGB productivity was

Figure 3. Box plots of experimental (gray) and regime-wise (colored) precipitation
total (a) and mean air temperature (b) of the precipitation amount and air tem-
perature-related subset. Median, first and third quartiles, and the lowest/highest
value within the 1.5 interquartile range of the lower/upper quartile are shown.
Please note that variable mean air temperature shows the original air temperature
values, while the model input is the transformed mean air temperature variable
(with growth optimum assumed at long-term average of 17.4 °C).

Figure 4. Box plots of experimental (gray) and regime-wise (colored) precipitation
sum (a), number of dry days (b), number of rain events (c), and mean dry-interval
length (d) of the precipitation amount and variability-related subset. For a
description, refer to Figure 3.
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significantly enhanced, which was more pronounced in the dry (dry/conP) compared to the medium
precipitation (med/conP) regime. For all subregimes, the relative AGB change was strongly significant
(<0.001; Figure 6b), with the highest AGB change in the medium precipitation regime. Here increases in
precipitation variability decreased relative AGB change only slightly. For the dry regime, increases in the
variability of precipitation inputs (dry/varP) led to strong reductions in eAGB productivity and relative
AGB changes.

Projected future summer precipitation totals in Germany ranged broadly, from an increase of 23% to a
decrease of 28%, with amean decrease in the experimental area of 0% to 10% (Table 3). Similarly, the number
of rainy days in summer (an indicator for the number of rain events used in our study) ranged from an

Figure 5. Box plots of experimental (gray) and regime-wise (colored) summer aboveground biomass (AGB, a) and relative change in AGB (b) for the precipitation
amount and air temperature-related subsets. For AGB (a, upper row), A denotes under normal atmospheric [CO2], and E stands for elevated [CO2] conditions; the
solid line represents mean AGB in the elevated rings (eAGB), and the dashed line depicts mean AGB under ambient [CO2] (aAGB). Differences among eAGB estimates
in the different subregimes were all significant except those pairs indicated by the same lower case letter (a, upper row). “***” (b, lower row) highlights a
significantly higher eAGB compared to aAGB.

Figure 6. Box plots of experimental (gray) and regime-wise (colored) summer aboveground biomass (AGB, a) and relative change in AGB (b) for the precipitation
amount and variability-related subset. For a description, refer to Figure 5.
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increase of 4 days to a decrease of 5 days in Germany, with a mean decrease of 0 to 3 days for the experimen-
tal area (Table 3). Projected air temperature changes for Germany in summer were very constant among the
models with a mean increase of 1.3 °C and a range from 0.2 °C to 3 °C across the models. The number of dry
days and mean dry-interval length were not modeled by the investigated global and regional
climate models.

4. Discussion

To evaluate potential changes in biomass productivity under future climatic and atmospheric conditions, we
estimated summer AGB under ambient and elevated CO2 by means of climate predictors and 18 years of the
GiFACE climate manipulation experiment. Despite a distinct overestimation of the most extreme AGB values,
the PLSR models for the precipitation amount and air temperature-related models yielded good results.
However, the PLSR models based on the precipitation amount and variability-related variables outperformed
the best precipitation amount and air temperature-related model by far. Here the nearly perfect fit of the
regression line between the measured and estimated summer AGB and the 1:1 line revealed that eAGB in
particular was accurately estimated. Even under the most extreme conditions, in the record dry and hot
summers of 2003 (Ciais et al., 2005) and 2015 (Orth et al., 2016), AGB yields were estimated very well.
Therefore, we conclude that the combination of the selected predictors realistically reflects the ecophysiolo-
gical importance especially of the precipitation variability-related variables. The results prove that aAGB and
eAGB can be estimated accurately by means of the selected climate predictors and long-term (18 years)
field observations.

We used the selected climate predictors to simulate potential future climate regimes on the basis of the pre-
dictor relations during the experimental period and their expected alterations under different climate model
runs. Irrespective of the high uncertainty especially regarding precipitation trends in Central Europe in IPCC
AR5 model ensemble, those climate models that captured past droughts (1901–2015) best, suggested a
future drying in the summer (Orth et al., 2016). Therefore, we conclude that the dry regime seems to depict
environmental conditions that will frequently occur in Central Europe in the mid of the 21st century.

Air temperature is widely projected to increase with a high certainty; thus, the hot subregimes are considered
to reflect dominant conditions in the near future. Therefore, the dry and hot subregime (dry/hot) is assumed
to be the most realistic future scenario within the precipitation amount and air temperature subset.

In concert with rising air temperature, the intervening dry spells between precipitation events may become
longer (Easterling et al., 2000; Hov et al., 2013; IPCC, 2007; Seneviratne et al., 2012; Sillmann et al., 2013).
Therefore, the number of dry days and the mean dry-interval length will most likely increase, which is sup-
ported by the projected decrease in the number of rain events for the study area. Thus, we conclude that
the subregimes with a high variability of rainfall inputs (dry/varP and med/varP) are most likely representing
dominant future conditions. Due to the concomitant reductions in total precipitation, the dry and variable
precipitation subregime (dry/varP) is likely to present the most dominant future conditions within the preci-
pitation amount and variability subset.

Table 3
Projected changes of the climatic variables during summer for the period 2021–2050 compared to 1961–1990

Germany
Study
area

Climatic variable Unit of change Minimum Mean Maximum Mean
PPT_Sum % �28 RCP8.5/NorESM1-M/

HIRHAM5
0 RCP2.6/MPI-ESM-LR/

REMO2009
+23 RCP8.5/HadGEM2-ES/

RegCM4–3
0 to �10

AT_Mean °C +0.2 A1B/BCM2/HIRHAM5 +1.3 RCP8.5/MIROC5/RC4 +3 RCP8.5/HadGEM2-ES/
CCLM4–8-17

+1 to +1.5

N° rainy days days �5 RCP2.6/EC-EARTH/
RCA4

�1 RCP4.5/MPI-ESM-LR /
REMO2009

+4 RCP4.5/IPSL-CM5A-MR/
WRF331F

0 to �3

Note. Minimum, mean, andmaximum values of 123 climate models are given, averaged over all grid cells in Germany. The mean change for the experimental area
is derived from the climate model run with the smallest absolute deviation to the mean of all 123 model runs. The climate model runs are referred to in form of
“emission scenario/global model/regional model.”
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Using the potential future climate regimes and the PLSR models, we were able to estimate regime-wise AGB
under ambient and elevated [CO2] and thus compare potential future alterations in AGB productivity.
Regime-wise AGB alterations will be first discussed for the dry regimes, followed by the hot subregimes
(hot) and finally the variable precipitation subregimes (varP).

The strong reduction in AGB productivity in the dry regimes was not surprising, since total summer
precipitation is widely recognized as the main driver of biomass productivity (Mowll et al., 2015; Nippert
et al., 2006; Weltzin et al., 2003). Lower aAGB and eAGB in the dry regimes compared to average AGB
in the experimental period indicated that precipitation-related biomass reduction outperforms the yield-
stimulating effects of higher [CO2]. This is in line with the observed long-term decline in grassland produc-
tivity due to increasing dryness despite increasing atmospheric [CO2] (Brookshire & Weaver, 2015).
However, the stronger reduction in eAGB compared to aAGB (low relative AGB change) in the dry regimes
was unexpected, since increased water-use efficiency of plants grown under elevated CO2 leads to the
widespread assumption that plants profit from elevated CO2 particularly under drier conditions (Morgan
et al., 2004; Soussana & Lüscher, 2007; Volk et al., 2000). Nevertheless, this is in line with a recent paradigm
change, which states that plants may only profit from elevated CO2 if the carbon demand is high, which
depends on processes of tissue formation and cell growth (Fatichi et al., 2014; Körner, 2015). The results
are in clear contrast to the expectations of a strongly enhanced AGB productivity in the future (Gu
et al., 2013; Hufkens et al., 2016; Li et al., 2014), which is mainly attributed to increasing atmospheric
[CO2] (Chang et al., 2017; Rounsevell et al., 2005).

In the dry regime where air temperature is generally high, the pronounced decrease in AGB productivity with
increasing air temperature may result from heat stress and indicates that the optimum temperature of this
plant community is already exceeded (Luo, 2007; Mowll et al., 2015). The concept of an optimum growth tem-
perature to which vegetation is adapted is also suggested by the low influence of air temperature on AGB in
the medium precipitation regime, where air temperature is near the optimum growth temperature.
Remarkably, in the dry regime, the influence of air temperature on eAGB was way beyond its influence on
aAGB. This can be explained by the increased water-use efficiency of plants grown under elevated CO2, which
reduces transpiration cooling, and thus may lead to intensified heat stress. Thus, negative impacts of rising air
temperature on biomass productivity have especially to be assumed for plants grown under elevated CO2.
This is supported by the additional negative relative AGB changes estimated in the dry subregimes with
increasing air temperature, and the negative CO2 fertilization effect observed in the experiment during the
record hot summer of 2003. Therefore, we conclude that the negative influence of high air temperature on
biomass productivity is likely to increase with increasing [CO2] and that strong reductions in biomass produc-
tivity in dry summers will be further aggravated by higher air temperature.

In the dry regime with high variability in precipitation inputs (dry/varP), lower AGB indicates the importance
of soil moisture variability. Here increases in the number of dry days and mean dry-interval length, combined
with the decreasing number of rain events, reduced AGB production independently of changes in total sum-
mer precipitation. This highlights the importance of the direct effects of soil moisture variability on root activ-
ity, plant water status, and photosynthesis (Fay et al., 2011), especially when soil water becomes limited. Such
a strong influence of timing and variability of precipitation inputs on biomass productivity (Craine et al., 2012;
Fay et al., 2003, 2011; Gherardi & Sala, 2015) is supported by the strongly improvedmodel performance when
variability-related variables were included. However, since changes in air temperature often translates to
altered water balance (De Boeck et al., 2008; Mowll et al., 2015; Niu et al., 2008), it is difficult to disentangle
temperature from precipitation variability-related effects on biomass productivity. Increasing air temperature
positively affects carbon gain several days after a substantial rain event (more likely in the medium precipita-
tion main regime and constant precipitation variability subregimes), while causing negative effects when soil
water is low during dry periods (more likely in the dry main regime and variable precipitation subregimes; Niu
et al., 2008). Nevertheless, the lower relative AGB change with higher precipitation variability is in line with
the new paradigm that plants profit from elevated CO2 only if carbon demand is high (Fatichi et al., 2014;
Körner, 2015). Therefore, we conclude that further reductions in grassland AGB are likely due to increasing
variability in precipitation in the near future.

Our study clearly reveals that grassland biomass productivity is reduced under more extreme climate
regimes, despite higher [CO2]. Such conditions, namely, reduced total precipitation and increased air
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temperature and precipitation variability, are very likely to occur more frequently in the near future
(Easterling et al., 2000; IPCC, 2007; Seneviratne et al., 2012). Importantly, under such unfavorable environ-
mental conditions, elevated CO2 might even reduce AGB productivity, probably due to reduced transpira-
tion, which weakens evaporative cooling. Therefore, the importance of air temperature to AGB
productivity might increase in future. The results are in clear contrast to the expected strong positive yield
anomalies owing to increases in [CO2] and its widely expected mitigating effect on negative climate-
change impacts. Moreover, our results are in contrast to a single-year study, which simulated near-future
climate and concluded that higher [CO2] might mitigate the effects of extreme drought and heat waves
on ecosystem net carbon uptake (Roy et al., 2016). Given the high species diversity in the investigated
grassland, the results seem even more noticeable, since it has been shown that a high biodiversity should
stabilize ecosystem productivity during more extreme climatic events (Isbell et al., 2015). Therefore, we
assume an overestimation of the yield-stimulating effect of higher [CO2] by model simulations, because
biomass reductions due to altered climatic conditions are not sufficiently considered. Thus, the amount
of livestock and wildlife forage per area in the temperate grassland of our study area and similar ecosys-
tems are expected to decrease in the future. Assuming constant respiration rates, reduced biomass pro-
ductivity will also translate into reduced terrestrial carbon uptake, the latter characterized by large
uncertainties mainly due to model disagreement for their sensitivity to rising atmospheric [CO2]
(Huntzinger et al., 2017; IPCC, 2007; Luo et al., 2008). This will further strengthen global climate change
via ecosystem feedback.
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