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Abstract: Over almost 20 years, a data storage, analysis, and project administration engine (TMFdw) 
has been continuously developed in a series of several consecutive interdisciplinary research pro-
jects on functional biodiversity of the southern Andes of Ecuador. Starting as a “working database”, 
the system now includes program management modules and literature databases, which are all ac-
cessible via a web interface. Originally designed to manage data in the ecological Research Unit 816 
(SE Ecuador), the open software is now being used in several other environmental research pro-
grams, demonstrating its broad applicability. While the system was mainly developed for abiotic 
and biotic tabular data in the beginning, the new research program demands full capabilities to 
work with area-wide and high-resolution big models and remote sensing raster data. Thus, a raster 
engine was recently implemented based on the Geo Engine technology. The great variety of pre-
implemented desktop GIS-like analysis options for raster point and vector data is an important in-
centive for researchers to use the system. A second incentive is to implement use cases prioritized 
by the researchers. As an example, we present machine learning models to generate high-resolution 
(30 m) microclimate raster layers for the study area in different temporal aggregation levels for the 
most important variables of air temperature, humidity, precipitation, and solar radiation. The mod-
els implemented as use cases outperform similar models developed in other research programs. 

Dataset: The link to the datasets is as follows: https://respect.app.geoengine.io (accessed on 2 De-
cember 2024). 

Keywords: working database, big raster data, raster engine, use case, area-wide microclimate 

 

1. Introduction 
Research data should be preserved and curated for future reuse in a sustainable man-

ner, for example, following the FAIR (Findable, Accessible, Interoperable, Reusable) prin-
ciples [1] or other models [2]. In comparison to FAIR, the Linked Open Data 5-star para-
digm strongly supports open data and does not make data reuse dependent on licensing 
agreements [3]. This is important because open and reproducible science requires free 
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access to research data [4,5]. The need for open data in all areas of science is becoming 
increasingly urgent, especially with the growing demand for data-driven applications [6]. 
This all holds for interdisciplinary biodiversity and other ecological research programs 
[7–9]. On the global to national scale, several repositories for long-term storage of biodi-
versity data are meanwhile established, such as the Global Biodiversity Information Facil-
ity (GBIF) [10], to name just one of the most prominent data infrastructures. In Germany, 
for instance, a multi-cloud platform based on the German Federation for Biological Data 
(GFBio) [11] project, the NFDI4Biodiversity (NFDI = German National Research Data In-
frastructure), is currently developed in order to provide a long-term repository of data for 
biodiversity and ecology research, with a main aim to mobilize national data from re-
search and collections [12,13]. However, challenges are becoming larger in the age of big 
data and the Internet of Things where not only species and other tabular data are of inter-
est but a variety of big data sources (genomics, remote sensing, numerical models, audio 
and video, etc.) [14] have to be managed and offered in such a way that users with usually 
restricted data literacy can provide and use data in a differentiated and uncomplicated 
manner [15–21]. 

Beyond such global and national data repositories, data collection, analysis, and pro-
vision often start in longer-term interdisciplinary research programs where proper data 
management and stewardship are a major task of project management [22,23]. One exam-
ple in German interdisciplinary biodiversity research is the BExIS system [24,25], which is 
an open-source research data management system to support interdisciplinary research 
projects with multiple subprojects following the FAIR principle. It has been successfully 
implemented for major German programs such as the Biodiversity Exploratories, the Jena 
Experiment, and the German Centre for Integrative Biodiversity Research (iDiv) Halle-
Jena-Leipzig [25]. Another widely used system is the TMF Data Warehouse (TMFdw), 
which was developed in another longer-term biodiversity-related research program [24] 
that started in 1997 in the biodiversity hotspot of the SE Ecuadorian Andes. In this pro-
gram, data types and volumes have changed as the focus of the research program has 
changed, and so have the data management requirements. Research started in 1997 with 
an abiotic and biotic inventory phase of the mega-diverse mountain rainforest ecosystem 
[26] and then turned to the analysis of ecosystem functioning [27]. Consecutive activities 
focused on ecosystem services under environmental change by including more and more 
area-wide datasets [28,29]. This led to the development of knowledge transfer solutions 
for sustainable land use as well as area-wide biodiversity and atmospheric monitoring 
[30–33]. Meanwhile, a follow-up program (Research Unit RESPECT; environmental 
changes in biodiversity hotspot ecosystems of South Ecuador: RESPonse and feedback 
effECTs [34]) investigates future environmental changes in the biodiversity hotspot by 
means of data-driven integrated Response–Effect Framework analysis and a new genera-
tion of biodiversity-informed land surface models [35]. After more than 20 years of re-
search, around 14 GB of tabular data have been collected in the TMFdw. Particularly, the 
running phase is now challenged by the integration of big geospatial data and the need 
for data enrichment and easy-to-use services by user-defined use cases. The TMFdw data 
store is designed to provide a flexible and standardized platform for managing a wide 
range of ecological datasets and is aimed at supporting researchers, environmental ana-
lysts, and policymakers. The primary aim is to facilitate interdisciplinary ecological re-
search by storing, integrating, and providing access to various types of data, including 
biological data (such as biodiversity measurements and vegetation information) and en-
vironmental data (such as climate observations and topographic information). 

The main objective of the paper is (1) to document the development steps of the 
TMFdw and (2) present the new features related to the management of large raster da-
tasets as well as (3) the recent integration of a central user-driven use case, namely, the 
generation of high-resolution climate raster data from point-based station measurements 
with machine learning. 
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The current paper is structured as follows. First, information about the history of de-
velopment and successful implementations of the TMFdw is given; then, the new tool to 
integrate big area-wide raster data using the Geo Engine [33] is introduced. The paper will 
close with a description of the use case prioritized by the researchers to offer area-wide 
microclimate data. 

2. The Data Warehouse TMFdw 
2.1. Development and Implementation 

The need to provide data access for the interdisciplinary program in SE Ecuador re-
sulted in the development of the first meta-database connected to a simple file system in 
the year 2001 [36]. The increasing diversity of data and the need to make it available to the 
research program and the public led to the development of the TMFdw in 2007, which has 
continued to evolve ever since (see Figure 1 [24]). 

 
Figure 1. Development phases of the TMFdw. 

The TMFdw technology will be freely available through the GitLab page [37] of the 
developing research group. Due to the different requirements of the projects and to meet 
new demands such as automatic uploading, better data visualization, and analysis tools 
(Figure 1) have been continuously developed. As a result, the TMFdw is meanwhile capa-
ble of hosting a diverse set of data from different scientific disciplines such as biodiversity, 
ecology, hydrology, atmospheric sciences, soil sciences, and health research, and thus, it 
was successfully applied in different collaborative programs in different fields of environ-
mental research (Table S1). 

The main component of the TMFdw is a web-based system built using enterprise-
level Java technology. It operates on a Tomcat server, stores information in a MySQL (My 
Structured Query Language) database, and uses the Hibernate framework for efficient 
data handling. The platform includes a REST API (representational state transfer), ena-
bling users to upload data to ongoing projects easily. Recent updates have added support 
for large-scale raster data through integration with the Geo Engine. Additionally, a Single 
Sign-On feature using OpenID Connect has been implemented, allowing seamless user 
access across the system. Uploaded data, including raw files, processed information, and 
metadata, are regularly backed up on secure tape storage managed by the university’s IT 
department. 

The data warehouse development follows the standards of the FAIR principle [1] that 
emphasizes the importance of data reuse. (i) Data should be findable. The TMFdw is a 
certified DOI (Digital Object Identifier) data center. The datasets and their metadata are 
provided via the website of the data warehouse, indexed by various web crawlers, and 
datasets that have a self-registered DOI that are findable in DOI catalogs. The data ware-
house for the SE Ecuadorian Andes itself is registered in the archive of data repositories 
re3data.org [38,39]. A DOI data center guarantees access to data for at least 10 years. For 
longer-term storage, we will provide data migration to a long-term archive, preferably 
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NFDI4Biodiversity. (ii) Data should be accessible and reusable. Datasets will be made 
publicly available (converted to open data) by the decision of the member assembly after 
the end of a funding period (3–4 years) of a fixed-term phase of the research program. 
Before, interested researchers can access the data owner (provided with the metadata) 
with direct permission to reuse the data. Data use and reuse are regulated by a data use 
agreement [40], which must be accepted by data users before downloading the datasets. 
Interested users can access open data via the data warehouse with a simple human verifi-
cation via email. (iii) Data should be Interoperable. We save our metadata in the EML 
(Ecological Metadata Language) [41,42], which is openly available and is based on and 
compatible with the Darwin Core [43] format. 

The data flow in the TMFdw is depicted in Figures 2 and 3. In general, unstandard-
ized and heterogeneous data with different data acquisition methods through instruments 
or manual collection must be transformed through conversion and manual or automatic 
preprocessing to standardized and homogeneous datasets in the data warehouse. First, 
standardized EML metadata need to be generated by the data provider as follows: Who 
has collected What data When and Where, and Which methods were used. The interface 
provides a general block of metadata, which includes the Who, When, and Where, and a 
section of metadata for each attribute (column) that should contain information about 
measurement methods and instrumentation. After that, data can be uploaded in CSV for-
mat for tabular data, GeoTiff is used for raster data and shape files are used for vector 
data. The user has to only create a dataset for this type of data once manually in the data 
warehouse and can set up an upload script to attach new data to this dataset via this in-
terface and the unique resource ID. Of course, the attributes of the new data have to match 
the ones in the existing dataset. For logger data, e.g., from our automatic weather stations 
(AWS) in the study area that need to be uploaded continuously, we implemented an au-
tomated uploading possibility via a REST interface and an automatic quality control [44]. 

At the moment, the TMFdw holds around 14 GB of tabular data. To categorize the 
data ontologically, we provide over 1000 categories grouped in 100 category nodes. Data 
providers can select from over 1300 attributes to map to their data with the possibility to 
create new attributes where needed. Over the years, we have given numerous data work-
shops to train new researchers. Users have two options for analyzing the data. They can 
use the analysis and visualization functions provided by the TMFdw and its raster engine 
via the user interface. If a non-implemented analysis is required, they can interact with 
the data through an online user interface or using the GeoEngine package in Python, al-
lowing them to perform analysis and visualization directly within the system. Addition-
ally, users can download the data to use in their own software tools through well-defined 
interfaces. The available functionality includes operators for aggregation (space and time), 
raster–vector combination, data filters, and raster and vector calculators; see docs.geoen-
gine.io (accessed on 2 December 2024) for more details. The data stored in the repository 
are generally open source, providing broad access to researchers, stakeholders, and the 
public. However, certain datasets may be subject to a limited embargo period, particularly 
if they are unpublished data needed for a PhD thesis. This provides some protection for 
PhD students to publish their data first. During this time, however, access to individual 
datasets is possible by contacting the data owner who is identified in the metadata. After 
this embargo period, the data are set to open access. 
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Figure 2. System architecture diagram. DB (database) (described in detail in Section 2.2.1). 

 
Figure 3. Data warehouse platform. AWS: automatic weather station (described in detail in Section 
2.2.1). 

2.2. The Novel TMFdw Raster Engine Using Geo Engine Technology 
In the current program, a new challenge was to include big, raster data [34], which 

was not possible with the recent structure of the TMFdw. As described below (Section 
2.2.1), the Geo Engine greatly improves the very basic raster data handling of the existing 
TMFdw implementation, providing web GIS functionality and better raster data storage 
capabilities. Relevant raster data are (i) customized climate and land-use model data for 
testing and forcing of a newly developed land surface model (LSM) HUMBOL-TD (Hy-
droatmo Unified Model of Biotic interactions Organic Matter and Local Trait Diversity), 
[45], (ii) high-resolution area-wide data from HUMBOL-TD model runs, and (iii) the con-
tinuously AI-generated high-resolution microclimate raster data using the automatically 
harvested tabular AWS data from the implemented use case For the model applications, 
we strive for a grid resolution of 1 km; for further analyses (land use changes, area-wide 
microclimatic data), we work on a 30 m grid resolution. Depending on the application, the 
temporal resolution of datasets ranges from 5 min to annual aggregation. To avoid 
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unnecessarily high development costs, we decided to include and adapt a readily availa-
ble framework for storing and analyzing big raster data for the ecological domain, the Geo 
Engine [46]. 

2.2.1. Using the Geo Engine as the TMFdw Raster Engine 
The Geo Engine features a data provider concept that allows it to connect to remote 

raster and vector data as well as local datasets. The TMFdw raster engine provides com-
mon locally stored vector datasets, like project areas and plots and regional political 
boundaries, as well as large raster data, e.g., climate model and satellite images, accessed 
and downloaded via APIs from the cloud. It also provides a means for project members 
to share their results as new datasets within the TMFdw raster engine with other mem-
bers. This allows project results to be easily incorporated into new analyses. In addition 
to data, the system offers workflow processing capabilities and interfaces for visualization 
and Python programming environments. The Geo Engine is an open-source platform for 
working with remote sensing and model raster data and for combining or integrating dif-
ferent types of spatial data (such as raster, vector, and tabular data) into a unified analysis 
or visualization. The idea is to alleviate the purely technical parts of raster data problems 
and processing, such as big data processing and time series data handling. In general, the 
Geo Engine connects to different data sources and provides harmonized access to them. 
The platform allows the definition of data pipelines using workflows on such harmonized 
geo time series. 

The main features of the Geo Engine are summarized in Figure 4. The Geo Engine 
has several key features designed to handle large, complex datasets efficiently. Instead of 
working with single images or files, it focuses on processing time series data, such as 
monthly images or other datasets that change over time. This approach is useful because 
it allows the engine to automatically manage updates and perform calculations over time, 
making it easier for users to work with evolving data. The engine uses a special way of 
processing data called chunk-wise processing. This means it breaks down large datasets 
into smaller pieces and handles each piece separately. For example, if you have a time 
series of satellite images, the engine processes them step by step, band by band, and tile 
by tile. This method is also applied to vector data (like points or shapes on a map), divid-
ing them into chunks based on their size or complexity. Users can apply various tools and 
calculations, such as filters, heatmaps, or combining data from different sources. For in-
stance, a user might load satellite images and compute vegetation indexes, like the NDVI, 
and combine these results with map features, such as fields or regions, to create a dataset 
ready for modeling. The Geo Engine does not store processed layers permanently on disk. 
Instead, it generates them on demand, which is why they are called virtual layers. This 
allows users to access the latest data without needing to handle updates manually. Users 
can access data through standard web-based mapping tools or programming environ-
ments, like Jupyter Notebooks. The system also connects easily with external data sources, 
allowing users to pull in data from other services without needing to store everything 
themselves. The Geo Engine’s web interface includes features like maps, data tables, and 
tools for creating custom workflows. It is designed to be user friendly, especially for those 
familiar with any desktop GIS software. Users can browse the data catalog, apply various 
tools, see the results on a map, and either download the processed data or continue work-
ing with it using Python 3 in Jupyter Notebooks 7.2.2. The virtual layer feature ensures 
that the data provided is always up to date, for example, by automatically updating daily 
temperature readings for a specific area. This means users obtain ready-to-use data with-
out needing to handle complex processing themselves. 
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Figure 4. Component diagram showing the Geo Engine and its component blocks. geoengine-UI 
(web interface) (described in detail in Section 2.2.2). 

2.2.2. Deployment and Connection of the Geo Engine as the TMFdw Raster Engine 
The aim was to smoothly connect the raster processing tool with the main data sys-

tem, making it easy for users to work with spatial data, similar to using desktop mapping 
software. The first step was creating a consistent user interface, matching the look and feel 
of the existing system. The second step was setting up a common login system so users do 
not need to sign in multiple times. The platform is built with different components work-
ing together. As a cloud-ready system, the Geo Engine makes use of open Open ID Con-
nect [47] containers to deploy the processing backend, databases, user interface, and Key-
Cloak [48]. 

KeyCloak is an open-source identity and access management solution for applica-
tions and services, providing features like single sign-on (SSO), user federation, and social 
login. This is deployable for scalability via three tools. The first tool is Docker, a platform 
for developing, shipping, and running containerized applications, enabling consistent en-
vironments across different systems. The second is Podman, a daemonless, open-source 
container engine similar to Docker, offering container management with enhanced secu-
rity features and compatibility with Kubernetes. The third is Kubernetes, which is an 
open-source container orchestration platform for automating the deployment, scaling, 
and management of containerized applications. 

When a user logs in, the Geo Engine automatically creates a linked user profile in the 
background. This way, users can move between the main data system and the raster en-
gine seamlessly. The system remembers their work, such as recent data layers or calcula-
tions. Users can also easily access their data in programming tools, like Jupyter Note-
books, using an access token. If a user’s account is deleted from the main system, they can 
no longer access the connected Geo Engine tools. This setup ensures a smooth experience 
while keeping data secure and easily accessible across the platform. 

The look and feel of the raster engine are also important to be considered as a joint 
service offering. Thus, Geo Engine’s web applications toolkit was used to define common 
elements, such as the RESPECT logo, and common colors, such as RESPECT’s project main 
colors, which are also used in the other parts of the TMFdw. This can be seen in Figure 5. 
Additionally, a floating button on top always links back to the homepage of the TMFdw. 
Alongside the SSO, this builds a seamless user experience. 
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Figure 5. Graphical user interface of the raster engine. 

2.2.3. The Spatial Data Catalog 
One important aim of the Data Portal is to provide the project members with a single 

access point to commonly used remote sensing and project data. Table S2 lists third-party 
data already included to force and test the HUMBOL-TD LSM and describes them in fur-
ther detail. The integration in the raster engine was conducted in three ways: manually 
(M), semi-automatically (SA), and automatically (A). Project-specific data, e.g., polygons 
of the study area, were uploaded into the portal and provided as layers to all users. Other 
data, e.g., Sentinel-2 multispectral imagery, have a connection to a STAC (SpatioTemporal 
Asset Catalog) service of Copernicus that can access the complete time series at any time. 
No up-front storage is required here. However, to speed up certain processes, users can 
store parts of the time series as a new, derived dataset. Data from ECMWF (European 
Centre for Medium-Range Weather Forecasts) and NASA could only be ingested semi-
automatically since they do not offer a direct access service but rather transform data re-
quests into a downloadable package, e.g., via a zip file as an e-mail notification. Thus, we 
chose to prefetch the years 2018–2023, after which an ingestion pipeline annotates the da-
tasets with Geo Engine’s metadata, e.g., defining the time series metadata, projections, 
and data types. All data are provided in the data catalog of the TMFdw raster engine. In 
the case of (A), new data will be continuously and automatically harvested to always make 
the latest version available to the users. 

As an example, we can obtain Sentinel-3 LAI (Leaf Area Index) and MODIS NDVI 
products from the raster engine’s data catalog (cf. Figure 6). We can display them on top 
of each other but also side by side. Figure 7 shows the workflow computing the mean LAI 
and mean NDVI value for the study areas polygons of the Mountain Rain Forest (MRF) 
and the Mountain Dry Forest (MDF) domain. On the right, two plots over the derived time 
series are displayed. On the top, a scatter plot of the LAI and NDVI for the domains is 
shown. At the bottom, the LAI values of the MDF are plotted over time. The workflow in 
Figure 7 shows how the raster data are combined with the polygon data. 
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Figure 6. Map display showing NDVI and LAI values. 

 
Figure 7. Examplary workflow of computing the relationbetween layers. 

3. Use Case: Area-Wide Microclimate Data in High Resolution 
In a survey, the members of the Research Unit RESPECT, which focuses on interdis-

ciplinary biodiversity research programs, were asked what kind of support they expected 
from the new TMFdw. They unanimously favored a use case that would make it possible 
to generate spatially high-resolution microclimate data of the study area from the point 
data of the program’s automatic weather stations (AWSs). These data should be used to 
enrich and jointly evaluate biodiversity data from any study plot that do not have their 
own AWS. The most important and thus target variables from an ecological point of view 
are air temperature, precipitation, air humidity, and solar radiation. The approach uses 
the tabular AWS data measured in the past and stored in the TMFdw to train and test 
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models with spatial predictors. The models shall then be automatically applied to the con-
tinuously incoming AWS data so that the automatic upload of the AWS data from the 
study area results in a continuous generation of high-resolution microclimate raster data 
for the entire study area (Figure 8). 

 
Figure 8. Schematic representation of the workflow implemented for the use case area-wide micro-
climate data. 

3.1. Data and Method 
As a basis for training, we used 11 AWSs operated for several years in the Andes of 

southern Ecuador (Table S3). The observation level was 2 m above ground for tempera-
ture, humidity, and radiation, and 1 m for rainfall. The PLSR models were developed for 
the Mountain Rain Forest domain (MRF) using AWS data between 2022 and 2023. The 
MRF stations represent an elevation gradient comprising natural ecosystems (forest, sub-
paramo) and the anthropogenic replacement system (pasture). 

The definition of the target variables was part of the use case survey among the sci-
entists in the research group [49] who mainly come from the field of organismic biology. 
The definition was also based on previous experiences from targeted data requests to the 
data manager for specific ecological–statistical analyses where climate data were used as 
predictors (The most frequently mentioned, ecologically relevant microclimate variables 
here were temperature and precipitation, followed by humidity (or saturation deficit) and 
solar radiation (as a proxy for PAR). Additional microclimate variables were neither re-
quested nor mentioned in the user survey. The target variables are available in 5–60 min 
temporal resolution at the AWS and were aggregated into hourly, daily, and monthly av-
erages or totals. To train the PLSR model, absolute values were used for air temperature 
and radiation, while log transformation was applied to precipitation and humidity data. 
The logarithmic transformation helps to stabilize variance and approximate normality, 
taking into account the skewness and heteroscedasticity typical of meteorological data, 
thus improving the interpretability and robustness of the models. 

The selected area-wide predictors are related to topography and land cover and to 
long-term averages of climate variables for the study area taken from the TMFdw raster 
engine (Table 1). The topography-related area-wide predictors rely on an Airborne Laser 
Scanning (ALS) campaign that yielded the digital elevation model [50]. We opted to use 
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Airborne Laser Scanning (ALS) data instead of publicly available DEMs due to several 
reasons. The ALS campaign allowed us to collect data specific to the study region with 
direct validation against ground control points. This localized data collection reduces po-
tential inaccuracies associated with using global DEM products, which might not account 
for specific local variations or have outdated information. While it is true that ALS data 
might not always represent the Earth’s surface accurately in densely vegetated areas, the 
technology’s ability to penetrate vegetation and capture ground points provides a more 
accurate representation of the terrain than optical satellite-based DEMs, which often in-
clude canopy height as part of the elevation data. Our study is part of a larger research 
consortium with multiple subprojects that require a standardized approach to data. Using 
ALS-derived DEM data ensures consistency across all subprojects, facilitating integrated 
analyses and comparisons. Relying on different DEM sources could introduce variability 
due to differences in resolution, acquisition time, and processing methods, complicating 
collaborative efforts within the consortium. The slope predictor is calculated from this 
DEM according to [51], the aspect is derived according to [52], and the Topographic Posi-
tion Index (TPI) is calculated according to [53]. 

The model used for this use case is Partial Least Squares Regression (PLSR). It is best 
at dealing with multicollinearity and small sample sizes, which are common in ecological 
datasets [54]. PLSR builds latent variables that capture the maximum covariance between 
predictors and response variables, optimizing predictive performance without overfitting. 
The “caret” package in R with the “pls” method as a modeling technique was used. We 
chose Partial Least Squares Regression (PLSR) for its ability to handle collinear, high-di-
mensional predictors, common in remote sensing and environmental data. PLSR is robust 
against noise, interpretable, and integrates well with our existing TMFdw workflows, 
making it ideal for extracting relevant information without overfitting [55]. 

Recursive feature elimination (RFE) was applied during model development to en-
hance performance by identifying and retaining only the most relevant predictors. RFE 
systematically removes less important variables and evaluates the model’s performance, 
iterating until the optimal set of predictors is identified. 

Cross-validation was employed to ensure the robustness and generalizability of the 
model. Specifically, we used k-fold cross-validation, where the data were partitioned into 
five subsets (each including two or three AWSs), with each subset being used as a test set 
once while the model was trained on the remaining four subsets. This approach helped to 
reduce overfitting and provided a more reliable estimate of the model’s performance 
across different subsets of data. The performance of the model was evaluated using the 
root mean squared error (RMSE) and R-squared (R2) metrics. The metrics were estimated 
iteratively using the test data subsets excluded from training. 

Finally, the models were intended to predict the target variables in the Mountain Rain 
Forest area for all retrospective and new incoming AWS data. For log-transformed varia-
bles, the values were transformed back to the original data space. Separate models were 
used to predict hourly, daily, and monthly data. The spatial resolution of the modeled 
microclimate raster data is 30 m. 

Model outputs are provided via a network drive, which is connected to the Geo En-
gine as a data source. Scripts are then used to import or update the metadata needed to 
load them as a time series. 

Table 1. List of area-wide predictors reused for the models of the four selected target variables (ALS 
= Airborne Laser Scanning campaign, X = predictor used). 

Target  
Variable 

Predictors 

Air  
Temperature 

Precipitation Humidity Radiation 

Elevation (ALS) X X X X 
Slope [52] X X X X 
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Aspect [53] X X X X 
TPI [54] X X X X 

Land cover [56] X X X X 
Mean annual 

temperature [57]  
X    

Mean annual 
relative humidity 

[58] 
  X  

Mean annual 
cloud frequency 

[59] 
 X   

3.2. Quality of the Use-Case Models, Results, and Discussion 
The quality of the best predictive models is generally very good based on the inter-

pretation of the R2 and RMSE values [60], which were used to describe the goodness of 
fit. The RMSE varies with the target variables and the temporal aggregation (Table 2, Fig-
ure 9). In general, hourly predictions are more difficult than for higher aggregation levels 
and, therefore, tend to be less accurate. Air temperature reveals the highest accuracy, fol-
lowed by radiation. Precipitation models perform a bit better than air humidity, except for 
the hourly aggregation due to the high spatio-temporal dynamics of mostly convective 
rain cells in the area. 

 
Figure 9. Results of daily microclimate models—measured vs. predicted parameters. (a) Mean daily 
air temperature in °C; (b) daily log10-transformed precipitation total in mm; (c) mean daily radiation 
in W m−2; (d) mean daily log10-transformed humidity in %. 
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Table 2. Accuracy of the best performing models. 

Parameter Aggregation Values Units RMSE R2 
Temperature Hourly Absolute °C 1.7 0.95 
Precipitation Hourly Absolute mm 0.09 0.53 

Radiation Hourly Absolute W m−2 4.17 0.93 
Humidity Hourly Log10 % 0.03 0.64 
Humidity Hourly Absolute % 1.07 0.64 

Temperature Daily Absolute °C 1.3 0.96 
Precipitation Daily Log10 mm 0.3 0.81 
Precipitation Daily Absolute mm 1.9 0.81 

Radiation Daily Absolute W m−2 1.6 0.92 
Humidity Daily Log10 % 0.1 0.75 
Humidity Daily Absolute % 1.02 0.75 

Temperature Monthly Absolute °C 0.9 0.97 
Precipitation Monthly Log10 mm 0.62 0.81 
Precipitation Monthly Absolute mm 4.9 0.81 

Radiation Monthly Absolute W m−2 0.7 0.87 
Humidity Monthly Log10 % 0.04 0.77 
Humidity Monthly Absolute % 1.09 0.77 

The accuracy of our microclimate use case data compared to other similar applica-
tions is generally high, especially when its high spatio-temporal resolution is considered. 

In the air temperature domain, our predictions generally outperform similar studies 
(Table S4) [57,61–85]. Most of their products estimate temperature at the daily temporal 
resolution. At this temporal resolution, our models achieved an RMSE of 1.3 °C and an R2 
of 0.96. The RMSE at the same temporal resolution was reported to be between 1.8 °C and 
4.9 °C. Our hourly models reached an RMSE of 1.7 °C, surpassing the performance metrics 
of the most sub-daily models reported in the literature, which were reported to be between 
0.31 and 11.9 °C. However, the few models outperforming our study were applied at the 
spatial resolution between 1 km and 4 km and not 30 m as in our case 

At the monthly resolution, our models reached an RMSE of 0.97 °C, surpassing the 
RMSE between 1.1 °C and 2.5 °C of the previous models at a similar temporal resolution 
(Table S5) [86–94]. Our rainfall models reached an RMSE of 0.09 mm and R2 of 0.53 at the 
hourly and an RMSE of 1.9 mm and R2 of 0.81 at the daily temporal resolution. In compar-
ison to other approaches , they outperform the models predicting hourly precipitation in 
which the RMSE stayed in the range between 1.6 and 1.8 mm. Most of the previous models 
predicted monthly precipitation rates only. The model performances varied strongly de-
pending on the month (RMSE = 1.5–37.7 mm) Several studies found much worse model 
performance between 54.3 mm and 191.8 mm at the monthly temporal resolution. For rel-
ative air humidity, our models reached an RMSE = 1.02% and 1.09%. They strongly out-
performed the models used in previous studies (Table S6) [95–101], which had an RMSE 
between 3.5% and 14.2%. Our radiation models performed similarly to the models in pre-
vious studies. Our estimated RMSE was between 0 and 4.14 W m−2. These values can be 
also found in the literature, with an RMSE between 0.4 and 4.78 W m−2 (Table S7) [102–
108]. The most common methods applied here were several types of artificial neural net-
work models. 

Figure 10 shows an example of the high-resolution microclimate raster data gener-
ated for the target variables. 
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Figure 10. Spatial prediction of the parameters using the daily PLSR model for 15 April 2022 at a 
resolution of 30 m. (a) Mean average air temperature; (b) precipitation total; (c) mean average solar 
radiation; (d) mean average relative humidity. The black line indicates the MRF study domain of 
the research unit. 

All modeled microclimate raster data are stored in the TMFdw raster engine, which 
results in a very high data volume. Per year, the data volume for the domain in Figure 10 
with all temporal resolutions sums up to 620 GB, by far exceeding the tabular data of about 
14 GB hitherto stored in total. With these data volumes, it is favorable to use a cloud plat-
form, like the TMFdw raster engine, instead of downloading all the data and working 
with it locally. Given the significant data volume of 620 GB per year for raster data, com-
pared to just 14 GB for tabular data, managing such a large dataset poses challenges. We 
recommend that users conduct their statistical analyses directly on the TMFdw raster en-
gine platform rather than downloading the entire dataset locally. This approach offers 
several key benefits. First, it ensures that the data are not duplicated for each user, reduc-
ing storage overhead and preventing unnecessary copies. Second, by working directly on 
the platform, all users access the same, consistent version of the data, eliminating discrep-
ancies caused by different data versions. Third, the platform’s capabilities include caching 
and storage of intermediate results, which helps avoid repetitive calculations and en-
hances processing efficiency. Our strategy for handling these large data volumes involves 
centralized storage on a scalable infrastructure, minimizing the load on local devices and 
ensuring efficient data management. We also recognize that using the platform effectively 
may require additional training, particularly for ecologists who might be less familiar with 
this approach. To address this need, we will offer targeted training sessions, including a 
dedicated database workshop, to help users understand how to fully leverage the plat-
form’s features and capabilities. This approach will enable streamlined, consistent anal-
yses while making efficient use of the available computational resources. 

4. Conclusions 
In this paper, we presented a comprehensive data warehouse designed for small- to 

medium-sized ecological research programs. The main objective of the initial develop-
ment in 2002 was a meta-database for standardized data communication between the 
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members of a joint ecological project in order to strengthen joint synergetic data evalua-
tion [36]. The growing realization that collected research data should be open for reuse 
[29] led to the development of the first version of the current TMFdw data warehouse as 
a DOI data center [24]. The TMFdw was planned as a project database to serve as a stand-
ardized but temporary project database for ecological projects, whose data could be trans-
ferred to a final permanent repository after the end of the project period. In order to sim-
plify the management of interdisciplinary projects, various functions (literature database, 
management tools for research infrastructure, news system, etc.) have also been inte-
grated. New requirements in ecological research, such as the use of large raster datasets, 
especially from remote sensing and ecological modeling, as well as the increasing desire 
to make simple analysis functions available via machine learning, have ultimately led to 
the new developments presented in this paper [21,109,110]. 

The flexibility of the database, which is available as open source, has been demon-
strated by its diverse implementation in a wide range of interdisciplinary environmental 
projects with heterogeneous datasets (Supplementary Materials) and shows the impact on 
the field of research data management in interdisciplinary environmental research pro-
grams. 

The current TMFdw is a unique open-source working database for medium- and 
small-to-medium-scale environmental research projects and also offers a comprehensive 
range of services. It is easy to implement and adapt to coordinated environmental projects. 
A main innovation of the recent version is the inclusion of the raster data engine to include 
big data from remote sensing and environmental modeling, including easy-to-use visual-
ization and analysis tools. It bridges the gap between tabular ecological data and large-
scale spatio-temporal datasets. This allows researchers to enrich biological data recorded 
at individual research plots with respective abiotic data taken from global grid datasets 
for their analyses. Ecologists frequently ask for high-resolution grid data on the microcli-
mate, which are mostly not available as grid datasets for data enrichment. The second 
innovation of the TMFdw is, therefore, the implementation of user-demanded use cases, 
such as generating and automatically updating spatio-temporally high-resolution grid 
data of the microclimate based on microclimate observations, data grids, such as DEMs, 
and machine learning methods. 

The technical validation of the database is mainly based on user feedback. Reported 
malfunctions or useful user-requested additions are immediately implemented in the cur-
rent project version and adopted in the open GitHub version. The regularly incoming log-
ger-based data are partly checked using simple correction algorithms (for climate data, 
refer to [41]). Users are otherwise responsible for the quality assurance of the data they 
upload but must include quality information in the metadata. The generated secondary 
grit data of the use cases, such as the microclimate grids, are validated with independent 
data in the scope of the machine learning model development, and the accuracy metrics 
(e.g., RMSE; MAE) are reported in the quality section of the metadata. 

Current limitations are mainly related to user support. There is limited capacity to 
support other external interdisciplinary projects during TMFdw implementation and ad-
aptation to the project. Even if the use of the TMFdw is largely self-explanatory and is 
supported with help texts for the individual functions, it is recommended to at least train 
new users through regular user workshops. A main use note is to carefully use the data 
in the TMFdw. Due to the different accuracies of primary and secondary data, users must 
be asked to carefully study the quality of information in the metadata before using them 
for their own analyses. The main use note for new TMFdw operators is to think about data 
categories needed in their project, which have to be established before data can be up-
loaded. In terms of scalability, very large datasets can have high storage costs. Due to the 
novelty of the approach, experiences with scalability are limited so far. 

In addition to the general improvement of the TMFdw and its documentation, two 
future directions will be pursued with priority. First, we strive to implement further use 
cases and enable users to run their own R or Python scripts in the TMF environment. This 
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would significantly expand the user-defined analysis functions and thus may convert the 
TMFdw step by step to a comprehensive data and analysis platform. Second, we will 
strengthen the TMFdw by connecting it to ecological models, such as LSMs (land surface 
models) and Dynamic Vegetation models (DGVMs). Appropriate interfaces should make 
it possible to use data for model parameterization and forcing directly from the database 
and to save the results of the model run with their metadata directly in the DW. 

Supplementary Materials: The following supporting information can be downloaded at 
https://www.mdpi.com/article/10.3390/data9120143/s1, Table S1. Successful implementations of the 
TMFdw. Table S2. List of remote sensing and model data provided by the TMFdw raster engine for 
HUMBOL-TD model forcing and testing to generate future land use scenarios. Table S3. List of the 
use AWS data for the measuring network in the south Ecuadorian Andes. Table S4. Summary of 
reference articles for area-wide air temperature predictions. Table S5. Summary of reference articles 
for area-wide precipitation predictions. Table S6. Summary of reference articles for area-wide rela-
tive humidity predictions. Table S7. Summary of reference articles for area-wide solar radiation pre-
dictions. 
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SUPPLEMENTARY MATERIALS 

Table S1. Successful implementations of the TMFdw. FOR: DFG Research Unit. PAK: DFG 
bundle program, DFG: German Research Foundation, SP: subproject, LOEWE: Hessian state 
offensive for the development of scientific and economic excellence, D: Germany, EC: 
Ecuador, BMBF: Federal Ministry of Education and Research. Current development is mainly 
funded by the DFG RU2730 RESPECT (bold). For further information, refer to (https://uni-
marburg.de/EjXEhf). *over three 2-years funding phases. **Data from long-term research in 
the biodiversity hotspot of the SE-Andes in Ecuador included in the TMFdw. 

https://uni-marburg.de/EjXEhf
https://uni-marburg.de/EjXEhf
https://uni-marburg.de/EjXEhf


Program Topic Duration No SP Funding 
Agency 

URL 

 TMFdw          

**PK EC Biodiversity, 
inventory 

1997-2001 11 DFG - 

**FOR402 Biodiversity, 
functioning 

2001-2005 28* DFG http://bergreg
enwald.de/pa
ges/02About.
html 

**FOR816 Biodiversity, 
ecosystem 
services 

2006-2013 25 + 4 BMBF + 
5 EC 

DFG https://vhrz66
9.hrz.uni-
marburg.de/t
mf_respect/co
ntent_projects
.do?phase=2
&subpage=int
ro 

**PAK823-
825 

Knowledge 
Transfer 

2014-2018 17D + 4EC DFG https://vhrz66
9.hrz.uni-
marburg.de/t
mf_respect/co
ntent_projects
.do?phase=3
&subpage=int
ro 

**FOR2730 Biodiversity, 
area-wide 
modelling, RS, 
AI 

Since 2018 11 DFG https://vhrz66
9.hrz.uni-
marburg.de/t
mf_respect/ho
me.do 

 Further  Implementa-
tions 

      Further 
implementa-
tions 

FACE2FACE Climate change 
(FACE), carbon 
cycle 

2014-2017 13 LOEWE www.face2fac
e.center 

CorsicArchive Dendro-
climatology 

2017-2020 4 DFG www.CorsicAr
chive.de 



FOR2358 Landscape 
history 

2017-2023 8 DFG https://www.u
ni-
marburg.de/e
n/fb19/dfg235
8 

FOR2337 Nitrogen cycle 2016-2022 9 DFG - 

FOR5288 Hydrology - 
Stormflow 

Since 2020 8 DFG http://ssf-
hydrology.org 

DARWIN Climatology, AI Since 
2022- 

2 DFG www.darwin-
rain.org 

HABITAT Health-climate 
change, AI 

Since 2024 12 LOEWE https://vhrz66
9.hrz.uni-
marburg.de/h
abitat/) 

 
  



Table S2. List of remote sensing and model data provided by the TMFdw raster engine for 
HUMBOL-TD model forcing and testing, and to generate future land use scenarios. LST: Land 
Surface Temperature, ET: Evapotranspiration 

 
Dataset Description Resolution Source Integrat

ion 
Sentinel-2 Level 2C from Copernicus 10-60 m Element 84 

STAC 
A 

ALOS PALSAR Digital Elevation Model 30 m NASA 
Earthdata 

SA 

ASTER Digital Elevation Map 30 m NASA 
Earthdata 

SA 

CMIP6 Future climate scenarios  ECMWF 
Climate 
Data Store 

SA 

ERA5 reanalysis data with multiple 
climate variables:  

- air temperature 
- eastward wind 
- northward wind 
- specific humidity 
- relative humidity 

 
 

0.25° ECMWF 
Climate 
Data Store 

SA 

ERA5 Land reanalysis data with multiple 
climate variables: 

- 2m temperature 
- 10m u component of 

wind 
- 10m v component of 

wind 
- 2m dewpoint 

temperature  
- surface net solar 

radiation 
- surface pressure 
- surface solar 

radiation downwards 
- surface thermal 

radiation downwards 
- total precipitation 

0.1° ECMWF 
Climate 
Data Store 

SA 

ECOSTRESS Derived products for canopy 
and soil: 

- ETcanopy 
- ETdaily 
- ETinst 
- ETinstUncertainty 
- ETinterception 
- ETsoil 

70 m NASA 
Earthdata 

SA 

Sentinel-3 LAI Leaf Area Index 333 m Copernicus 
WCS 
service by 
Vito 

SA 

MODIS Monthly EVI & NDVI 0.05° USGS SA 



 
TPI Landform data, aspect & 

slope 
30 m  SA 

SRTM Digital elevation model 30 m NASA 
Earthdata 

M 

 
  



Table S3. List of use AWS data for the measuring network in the south Ecuadorian Andes 
(Cit-ID is http://www.lcrs.de/data_pre.do?citid=xxxx).  

 

Station Latitude Longitude Elevation 

[m a.s.l.] 

Land cover Cit-ID 

xxxx 

Bombuscaro -4.11444 -78.9650 1234 Pasture 1712 

Bombuscaro Bosque -4.11526 -78.9673 1173 Forest 1888 

Cajunama -4.11414 -79.1751 2749 Subparamo  2003 

Cajunama Pastos -4.08976 -79.1846 2749 Pasture 1887 

Cajunama Bosque -4.11445 -79.1750 2732 Forest 1886 

ECSF -3.97254 -79.0763 2033 Forest 1713 

ECSF Pastos -3.96684 -79.0753 1957 Pasture 1718 

ECSF Pinus -3.96842 -79.0793 2004 Forest 1747 

ECSF Bosque -3.97351 -79.0761 1826 Forest 2021 

El Tiro -3.97917 -79.1439 2825 Subparamo 1714 

Zamora Pastos -3.62223 -78.6825 1338 Pasture 1847 

 

 
  



Table S4. Summary of reference articles for area-wide air temperature predictions 

Reference Method RMSE [°C] R2 Spatial 
resolution  

Temporal 
resolution 

[1] Random 

forest 

1.7 0.60 120 m Day 

[1] Random 

forest 

0.8 0.84 120 m Month 

[2] Regression  1.2 – 1.4 0.95 – 0.99 5 km Month 

[3] Extrapolation  4.9  0.71 250 m Diurnal  

[4] Regression  0.6 – 0.8  0.70 – 0.74 90 m 2 days 

[5] Linear 

regression 

1.8 0.93 5 km Day 

[6] TVX algorithm 3.4 -  1 km Day 

[7] Energy 

balance  

2.1 0.90 10 km Hour 

[8] Bowen 

equilibrium  

2.2 - 1 km Day 

[9] Deep learning 1.9 – 3.6 0.94 – 0.98 1 km Month 

[10] Regression 1.5 – 2.1 - 500 km Month  

[11] Neural 

network 

1.2 0.99 1 km Month 

[12] Regression 1.2 0.90 5 km Month 

[13] Linear 

regression 

2.4 – 3.9 0.59 – 0.79 1 km Month 

[14] Regression 1.1 – 1.4 - 1 km Month 

[15]  Energy 

balance  

0.3 0.77 90 m Month 



[16] Random 

forest 

- 0.74 1 km Month 

[6] Linear 

regression 

2.9 0.88 1 km Month 

[17] Regression 2.1 – 2.3 0.94 1 km Day 

[18] Regression 3.0 - 1 km 3 months 

[19] Regression 2.1 – 2.4 - 4 km Day 

[20] Random 

forest 

10.5 – 11.9 0.56 – 0.71 1 km Hour 

[21] Boostrapping 1.3 0.94 1 km Day 

[22] Interpolation - - 50 km Day 

[23] Interpolation 1.5 – 2.3 - 1 km Month 

[24] Interpolation 0.4 - 10 km Year  

[25] interpolation 3.0 0.88 5 km Month 

[26] Interpolation - - 0.1 km Month 

 

  



Table S5. Summary of reference articles for area-wide precipitation predictions 

Reference Method RMSE [mm] R2 Spatial 
resolution 

Temporal 
resolution 

[27] 

 

Regression 6.0 - 38 0.34 – 0.57 1 km Month 

Random 

forest 

0.6 – 6.2 0.98 1 km Month 

CART 1.0 – 14.1 0.91 – 0.98 1 km Month 

k-NN 2.2 – 19.4 0.79 – 0.94 1 km Month 

SVM 2.9 – 37.7 0.71 – 0.88 1 km Month 

[28] 

 

Ordinary least 

square  

- 0.56 – 0.77 250 m Day 

Spatial log 

model 

- 0.62 – 0.89 250 m Day 

Regression - 0.74 – 0.93 250 m Day 

[29] Regression 4.55 0.86 10 km Month 

[30] Log-linear 

kriging 

12.2 0.42 1 km Month 

Log-space 

kriging 

13.8 0.37 1 km Month 

[31] 

 

Universal 

kriging 

178 0.61 5 km Year 

Ordinal kriging 201 - 211 0.45 – 0.5 5 km Year 

Regression 

kriging 

186 0.57 5 km Year 

Linear 

regression 

222 0.39 5 km Year 

[32] Deep learning 1.6 – 1.8 - 2 km 10 min 

[33] Regression 

kriging 

- 0.84 1 km Year 



[29] Random 

forest 

1.5 – 2.1 0.92 5 km 10 min 

[34] 

 

Stepwise 

regression 

28.11 - 10 km Month 

Weighted 

regression 

20.94 - 10 km Month 

Random 

forest 

19.81 - 10 km Month 

[35] Space-time 

kriging 

59.30 - 5 km Year 

 

Table S6. Summary of reference articles for area-wide relative humidity predictions 

Reference Method RMSE [%] R2 Spatial 
resolution 

Temporal 
resolution 

[36] Least-squares 

collocation 

7.3 - 3 km Day 

[37] WRF model 13.2 – 19.1 0.73 – 0.92  25 km 6 hours 

[38] Neural 

network 

5.1 0.98 16 km 6 hours 

[39] Neural 

network 

16.0 - 10 km Day 

[40] Bayesian 

Retrieval 

20 - 30 - 16 km Day 

[41] Multivariate 

regression 

3.5 – 5.8 0.80 – 0.96 30 km Day 

[42] 

 

Neural 

network 

10-15 - 30 km Hour 

Multivariate 

regression 

2-4 - 30 km Hour 

IPMA 2-4 - 30 km Hour 



Table S7. Summary of reference articles for area-wide solar radiation predictions 

Reference Method RMSE R2 Spatial 
resolution 

Temporal 
resolution 

[43] Neural 

network 

0.16 – 0.32 0.93 – 0.95 1.1 km Day 

[44] Partial-least 

square 

regression 

4.78 0.70 – 0.93 0.5 m Day 

[45] Extreme 

learning 

machine 

0.405 – 0.645 0.96 – 0.99 25 km Month 

[46] 

 

Neural 

network 

1.613 - 2.275 0.86 – 0.92 80 km Day 

Support 

vector 

machine 

1.994 – 2.589 0.84 – 0.90 80 km Day 

Gaussian 

process 

learning 

2.065 – 2.723 0.82 – 0.88 80 km Day 

Genetic 

programming 

2.142 – 2.856 0.79 – 0.88 80 km Day 

[47] Neural 

network 

23 - 5 km Day 

[48] Regression 1.32 – 2.66 - 60 km 8 days 

 Regression 1.25 – 3.20 - 60 km Day 

[49] Pinker 

algorithm 

1.06 – 5.34 - 280 km Day 

 Pinker 

algorithm 

5.34 - 280 km Month 
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