Cite as:
Rollenbeck, R.; Bendix, J. &amp; Fabian, P. (2011): <b>Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador</b>. <i>Hydrological Processes </i> <b>Vol. 25</b>(Issue 3), 344–352.

Resource Description

Title: Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador
FOR816dw ID: 230
Publication Date: 2011-06-01
License and Usage Rights: PAK 823-825 data user agreement. (
Resource Owner(s):
Individual: Rütger Rollenbeck
Individual: Jörg Bendix
Individual: Peter Fabian
As part of an interdisciplinary research programme, the spatial and temporal variability of precipitation in southern Ecuador has been investigated since January 2002. The study site is located at the northern margin of the Podocarpus National Park in the vicinity of Loja, about 500 km south of Quito, at altitudes ranging from 1800 to 3200 m.a.s.l. Due to its low density, the conventional rainfall station network fails to register the highly variable spatial distribution of rain, whereas contributions by fog are not accounted at all. Hence, for the first time in a tropical montane forest setting, a weather radar was used, covering a radius of 60 km and reaching from the Amazon Basin to the coastal plains of the region. Furthermore, a network of sampling stations supplies data about the altitudinal gradient of fog and rainwater inputs. The precipitation distribution in the study area proves to be far more variable than previously thought and is strongly coupled to the orographic characteristics and the special topographical setting of the landscape. Maxima in precipitation occur especially in the eastern parts of the radar range on slopes exposed to advected moisture from the Amazon Basin, whereas the highest crests of the Andes receive less precipitation. The study area has two cloud condensation levels, occurring at 1500–2000 and 2500–3500 m.a.s.l., respectively. At 1800–2000 m.a.s.l., fog is estimated to contribute an additional input of 5% of conventionally measured rainfall, increasing to about 35% at the highest measurement station (3200 m.a.s.l.). In contrast to some other tropical mountains, there seems to be no maximum zone of water input, although the gradient remains positive up to the highest altitudes. The unusual precipitation distribution is thought to reflect the contrasting climatological influences operating in the study area.
| Fog detection | fog | precipitation dynamics |
Literature type specific fields:
Journal: Hydrological Processes
Volume: Vol. 25
Issue: Issue 3
Page Range: 344–352
Metadata Provider:
Individual: Rütger Rollenbeck
Online Distribution:
Download File:

Quick search

  • Publications:
  • Datasets: